Tìm các cách đặt tất cả 16 số từ 1 đến 16 vào 16 ô vuông kề nhau , thỏa mãn tổng 2 số kề nhau là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Cách sắp xếp các số từ 1 đến 16 vào hình vuông 4x4 sao cho tổng mỗi hàng, cột, đường chéo bằng nhau?
các số sắp xếp như sau:
1 14 15 4
12 7 6 9
8 11 10 5
12 2 3 16
tổng mỗi hàng, cột, chéo là 34
các số sắp xếp như sau:
1 14 15 4
12 7 6 9
8 11 10 5
12 2 3 16
tổng mỗi hàng, cột, chéo là 34
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt
Đặt vào rồi nói nó có thể :) hí hí! !
Từ 1 => 16 có 8 cặp 1 + 16 .... 8+ 9 đều bằng nhau vậy thì mỗi cột chỉ cần 2 cặp như thế thì tất cả các cột có tổng là bằng nhau :)
Khó Qúa