Tìm giá trị của x
𝑥 +4/5 ×3/8=3/2
𝑥=2/5
𝑥=6/5
𝑥=16/5
𝑥 =72/40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
a: \(5x^4-x^3+7x\)
\(=x\left(5x^3-x^2+7\right)\)
c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(a,\Rightarrow2\left(x+5\right)-12=-20\\ \Rightarrow2\left(x+5\right)=-8\\ \Rightarrow x+5=-4\Rightarrow x=-9\\ b,\Rightarrow x-28+x=-24\\ \Rightarrow2x=4\Rightarrow x=2\\ c,\Rightarrow6\left(x-2\right)^3=-384\\ \Rightarrow\left(x-2\right)^3=-64=\left(-4\right)^3\\ \Rightarrow x-2=-4\Rightarrow x=-2\\ d,\Rightarrow2^x\left(1+2^3\right)=72\\ \Rightarrow2^x\cdot9=72\\ \Rightarrow2^x=8=2^3\Rightarrow x=3\)
a,⇒2(x+5)−12=−20⇒2(x+5)=−8⇒x+5=−4⇒x=−9b,⇒x−28+x=−24⇒2x=4⇒x=2c,⇒6(x−2)3=−384⇒(x−2)3=−64=(−4)3⇒x−2=−4⇒x=−2d,⇒2x(1+23)=72⇒2x⋅9=72⇒2x=8=23⇒x=3a,⇒2(x+5)−12=−20⇒2(x+5)=−8⇒x+5=−4⇒x=−9b,⇒x−28+x=−24⇒2x=4⇒x=2c,⇒6(x−2)3=−384⇒(x−2)3=−64=(−4)3⇒x−2=−4⇒x=−2d,⇒2x(1+23)=72⇒2x⋅9=72⇒2x=8=23⇒x=3
\(\left(5x-1\right)\left(x+3\right)-\left(x-2\right)\left(5x-4\right)\)
\(=5x^2+14x-3-5x^2+14x-8\)
\(=28x-11\)
\(x+\dfrac{4}{5}\times\dfrac{3}{8}=\dfrac{3}{2}\)
\(x+\dfrac{3}{10}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{10}\)
\(x=\dfrac{12}{10}=\dfrac{6}{5}\)
x=6/5