Tìm số nguyên tố n thỏa mã 2n+7 chi hết cho 12n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2 n + 7 ) ⋮ ( n + 1 )
vì ( n + 1 ) ⋮ ( n + 1 )
=> 2 ( n + 1 ) ⋮ ( n + 1 )
=> ( 2 n + 2 ) ⋮ ( n + 1 )
=> ( 2 n + 7 ) − ( 2 n + 2 ) ⋮ ( n + 1 )
=> ( 2 n + 7 − 2 n − 2 ) ⋮ ( n + 1 )
=> 5 ⋮ ( n + 1 )
=> ( n + 1 ) ∈ Ư ( 5 ) = { ± 1 ; ± 5 }
Ta Có Bảng Sau:
n + 1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
Vậy n thuộc {0,4}
a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)
a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
2n+3 | -17 | -1 | 1 | 17 |
n | -10 | -2 | -1 | 7 |
6n - 8 chia hết cho 2n - 3
6n - 9 + 1 chia hết cho 2n - 3
1 chia hết cho 2n - 3
2n - 3 thuộc U(1) = {-1;1}
n thuộc {1 ; 2}
12n + 14 chia ehets cho 3n + 1
12n + 4 + 10 chia hết cho 3n + 1
10 chia hết cho 3n + 1
3n + 1 thuộc U(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2; 5 ; 10}
n thuộc {-2 ; -1 ; 0 ; 3}
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
gọi (30n + 17, 12n + 7) = d
=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d
=> (30n + 17) - (12n + 7) chia hết cho d
=> 30 - 12 chia hết cho d
=> mà d lẻ và < 1
=> d = 1
vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau
làm được bao nhiêu thì làm
ai làm được nhiêu nhất sẽ dduocj