K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Vì n2+2n+12 là SC nên ta có \(n^2+2n+12=m^2\) (m là số tự nhiên)

\(=>\left(n^2+2n+1\right)+11=m^2=>\left(n+1\right)^2+11=m^2\)

\(=>m^2-\left(n+1\right)^2=11=>\left[m-\left(n+1\right)\right].\left[m+\left(n+1\right)\right]=11\)

\(=>\left(m-n-1\right).\left(m+n+1\right)=11=1.11=11.1\)

vì m,n là các số tự nhiên nên \(m-n-1< m+n+1\)

=>\(\left(m-n-1\right).\left(m+n+1\right)=1.11\)

=> \(\hept{\begin{cases}m-n-1=1\\m+n+1=11\end{cases}=>\hept{\begin{cases}m-n=2\\m+n=10\end{cases}}}\)

Cộng vế với vế:

\(\left(m-n\right)+\left(m+n\right)=2+10=12=>2m=12=>m=6\)

Từ đó suy ra n=4

Vậy n=4 thì n2+2n+12 là SCP

2 tháng 7 2016

Đặt \(n^2+2n+12=a^2\Leftrightarrow\left(n+1\right)^{^2}+11=a^2\Leftrightarrow\left(n-a+1\right)\left(n+a+1\right)=-11\)

Do n và s là số tự nhien nên xét ước 11 rồi tìm n và a sau , sau đó kết luan n = 4