Tìm các số nguyên tố p,q sao cho p2-pq-q3 =27
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 8 2023
1:
a: =>7(x+1)=72-16=56
=>x+1=8
=>x=7
b: (2x-1)^3=4^12:16=4^10
=>\(2x-1=\sqrt[3]{4^{10}}\)
=>\(2x=1+\sqrt[3]{4^{10}}\)
=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)
c: \(\Leftrightarrow6x-2+7⋮3x-1\)
=>3x-1 thuộc Ư(7)
mà x là số tự nhiên
nên 3x-1 thuộc {-1}
=>x=0
d: x^2+7 chia hết cho 2x^2+1
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>2x^2+1 thuộc Ư(13)
=>2x^2+1=1(Vì x là số tự nhiên)
=>x=0
NT
0
DY
1
NT
0
HM
1
23 tháng 6 2023
Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).
Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)
Xét q = 3
Ta có. p^2-3p-27 =27
=> p^2 - 3p - 54 = 0
=> p = - 6 hoặc p = 9 (đều không TM)
Xét q # 3. Ta có
p^2 - pq - q^3 = 27
=> p^2 - pq = q^3 + 27
=> p(p-q) = (q+3)[q^2 - 3q + 9] (*)
Nhận xét.
*) p > p - q (1)
*) q^2 -3q+ 9 -(q+3)
= q^2 -4q +6 = (q-2)^2 +2>0
=> q^2 - 3q + 9 > q + 3
*) ƯCLN( q^2 - 3q + 9; q+3)
= ( q(q+3)-6(q+3) +27;q+3)
= (27; q+3) = (3^3; q+3)
= 1 (3) ( vì q#3 nên q + 3 không chia hết cho 3...)
Từ (1); (2); (3) => (*) <=>
{ p = q^2 - 3q + 9
{ p-q = q + 3
=> 2q + 3 = q^2 - 3q + 9
=> q^2 - 5q + 6 = 0.=> q = 2 hoặc q = 3 (đã xét )
Với q = 2 ta có p = 2q + 3
=> p = 7 (TM)
ĐS: p = 7; q = 2
9 và 3
-9 và -3