K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

mk làm rồi mà

1 tháng 7 2016

a) x2 < 1 nên IxI < 1 <=> -1 < x < 1

b) \(2x+5\le7\)nên 2x\(\le2\)=> x\(\le1\)

1 tháng 7 2016

\(a,x^2< 1=1^2=>x< 1\) thỏa mãn bất phương trình

\(b,2x+5\ge7=>2x\ge7-5=2=>x\ge1\) thỏa mãn bất phương trình

a) ta có : 12.1 < 20 ; 12.2 > 20 và 12.4 > 50 nên các số tự nhiên x sao cho : x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50 là 24 , 36 , 48 .

b) ta có : 15.0 = 0 ; 15.1=15 > 0 và 15.2< 40 ; 15.3 > 40 nên các số tự nhiên x sao cho : x chia hết cho 15 và 0 < x < hoặc bằng 40 là 15 và 30

28 tháng 4 2018

Áp dụng \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) khi \(AB\ge0\)

Ta có: \(\left|x-2016\right|+\left|x-2017\right|=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)

Dấu "=" khi \(\left(x-2016\right)\left(2017-x\right)\ge0\Leftrightarrow2016\le x\le2017\)

Vậy khi \(2016\le x\le2017\) thì \(\left|x-2016\right|+\left|x-2017\right|=1\)

29 tháng 9 2018

\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)

\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)

\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

Chúc bạn học tốt ~ 

18 tháng 5 2017

c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)

Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)

18 tháng 5 2017

Mấy câu khác mình đang suy nghĩ nhé

31 tháng 3 2020

=> pt có 4 nc  <=> m> 0 

-33 < 5.x + 3 \(\le\)26 

-36 < 5.x \(\le\)   23

\(\frac{-36}{5}< x\le\frac{23}{5}\)

-7,2 < x  \(\le\)4,6 

=> \(x\in\left\{-7;-6;-5;-4;...;4\right\}\)

=> có 14 số