Giải phương trình :
a, x^2 < 1
b, 2x+5 lớn hơn hoặc bằng 7
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)
\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)
\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
Chúc bạn học tốt ~
Ta có: \(\left(a-b\right)^2\ge0,\forall ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)
Lại có: \(a^2+b^2\ge2ab\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(2\right)\)
Từ (1) và (2) suy ra ĐPCM
a2S1 = a2 + a4 + a6 +...+a2n+2
=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)
S1(a2-1) = a2n+2-1
=> S1 = (a2n+2-1):(a2-1)
Câu 2 cũng nhân với a2 là được
Đề bài sai nếu \(x;y\in R\)
Cho \(y=4;x=-0,000001\) thì vế trái ra 1 số âm có trị tuyệt đối cực to
Đề đúng phải là \(x;y\in R^+\)
Làm trong trường hợp đề đã chỉnh lại:
\(VT=x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)
\(VT\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{1}{2}.3=\frac{9}{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(a,x^2< 1=1^2=>x< 1\) thỏa mãn bất phương trình
\(b,2x+5\ge7=>2x\ge7-5=2=>x\ge1\) thỏa mãn bất phương trình