Tim gia tri nho nhat
A=1,7+|3,4-x|
Giup minh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
a) C = 1,7 + | 3,4 - x |
Vì | 3,4 - x | luôn lớn hơn hoặc bằng 0
=> 1,7 + | 3,4 - x | luôn lớn hơn hoặc bằng 1,7
Dấu bằng xảy ra khi <=> 3,4 - x = 0 => x = 3,4
Vậy,..........
b) Làm tương tự nhưng là tìm GTLN nhé
D = | x + 2,8 | -3,5
Vì | x + 2,8 | luôn lớn hơn hoặc bằng 0
=> | x + 2,8 | - 3,5 luôn bé hơn hoặc bằng 3,5
Dấu bằng xảy ra khi <=> x + 2,8 = 0 => x = -2,8
Vậy,............
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
\(F=\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)(Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))Dấu "=" xảy ra \(\Leftrightarrow-x\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}-x\ge0\\x+2\ge0\end{cases}}\\\hept{\begin{cases}-x\le0\\x+2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le0\\x\ge-2\end{cases}\Rightarrow x=0;-1;-2}\\\hept{\begin{cases}x\ge0\\x\le-2\end{cases}\Rightarrow x\in\varnothing}\end{cases}}\)
Vậy x = 0;-1;-2
cái chỗ giải -x(x+2) >=0 bạn tự giải làm 2 trường hợp: (-x>=0 và x+2>=0) hoặc (-x<=0 và x+2<=0)
|3,4 -x| >/ 0
=> |3,4 -x| =0
=> GTNN của A là 1,7 + |3,4 -x| = 1,7 + 0 = 1,7
ta có:
trị tuyệt đối của 3,4-x sẽ luôn luôn lớn hơn hoặc bằng 0
nên ta suy ra được \(1,7+\left|3,4-x\right|\ge1,7\)
suy ra MinA=1,7 suy ra x=3,4