K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

a=3+3^2+3^3+...+3^100

3a=3^2+3^3+3^4+...+3^101

3a-a=(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+...+3^100)

2a=3^101-3

2a=3^100

a=3^100/2

30 tháng 6 2016

A=3+3^2+...+3^100

3A=3^2+3^3+...+3^101

3A-A=3^101-3

2A=3^101-3

A=(3^101-3)÷2

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

17 tháng 12 2023

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

30 tháng 11 2021

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

24 tháng 10 2021

undefined

24 tháng 10 2021

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha

 

13 tháng 12 2021

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

16 tháng 12 2021

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

15 tháng 12 2021

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

26 tháng 12 2023

26 tháng 12 2023

       A =  1 - 3 +  32 -   33 + 34 - ... + 398 - 399 + 3100

      3A =  3 - 32 + 33 - 34+ 3 - ... + 399 - 3100 + 3101

3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100

4A   =    3101 + 1

  A    = \(\dfrac{3^{101}+1}{4}\) 

 

10 tháng 11 2021

    \(A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)   

          \(=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

                  \(=3^{101}-3\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow A=\dfrac{3^{101}-3}{2}\)