Cho hai số tự nhiên m, n thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\)có giá trị là một số nguyên. Gọi d là ước chung lớn nhất của m và n. Chứng minh rằng: \(d\le\sqrt{m+n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thầy nói đề sai rồi mà
phải là cm ƯCLN của a và b ko lớn hơn \(\sqrt{m+n}\)
Gọi \(gcd\left(m;n\right)=d\Rightarrow m=ad;n=bd\left(a,b\inℕ^∗\right)\) và \(\left(m;n\right)=1\)
Ta có:
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{m^2+m+n^2+n}{mn}=\frac{\left(a^2+b^2\right)d+\left(a+b\right)}{abd}\)
\(\Rightarrow a+b⋮d\Rightarrow a+b\ge d\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy ta có đpcm
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Đặt \(d=\left(m,n\right)\)
Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)
Lúc đó
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên
Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n (1)
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2)
Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2
Vậy p2 = n + 2 (Đpcm).
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn p/m−1 =m+n/p <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!