Tìm 1 số tự nhiên nhỏ nhất có tổng 12 ước số dương, bao gồm cả 1 và chính nó, trong đó chỉ có 3 ước số nguyên tố khác nhau và tổng của 3 ước số nguyên tố đó là 20.
Giúp mình nhá !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
câu 11:A
câu 12:A
câu 13: hình như sai đáp án, phải là 3 mũ chứ ko phải là 32 ở đáp án b đó
câu 14: C
mình tạm thời chỉ trả lời vậy thui, mình đang học
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
uses crt;
var i,n,t,j,kt:integer;
begin
clrscr;
readln(n);
t:=0;
for i:=2 to n do
if n mod i=0 then
begin
kt:=0;
for j:=2 to trunc(sqrt(i)) do
if i mod j=0 then kt:=1;
if kt=0 then t:=t+i;
end;
write(t);
readln;
end.
qua 8 năm rồi thì vẫn chưa ai giúp anh này....