K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

TA CÓ \(\Delta ADB\)đồng dạng \(\Delta AEC\)(g-g)

\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AE}{AC}\)

Xét \(\Delta AED\)và \(\Delta ACB\) có :

góc A chung

\(\frac{AD}{AB}=\frac{AE}{AC}\)(CMT)

\(\Rightarrow\Delta AED\infty\Delta ACB\)(c-g-c)

\(\frac{S\Delta AED}{S\Delta ACB}=\left(\frac{AD}{AB}\right)^2\)=\(\frac{3}{4}\)

\(\Rightarrow\frac{AD}{AB}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\cos A=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\)góc A=60 ĐỘ

30 tháng 6 2016

cảm ơn bạn nhiều nha!!!!!!!!!!!!!!!!

Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

Xét ΔAED và ΔACB có

góc AED=góc ACB

góc A chung

=>ΔAED đồng dạng với ΔACB

=>S AED/S ACB=(AE/AC)^2=(cos60)^2=1/4

=>S AED=1/4*S ACB

8 tháng 5 2020

hế lô chào mk các streamer

23 tháng 9 2019

Ta có: ∆ABD ~ ∆ACE( g.g) =>  A D A B = A E A C

=>  S A D E S A B C = A E A C 2

Mà trong ∆ACE có cosA =  A E A C

=>  S A D E S A B C = cos A 2

=>  S A D E = S A B C . cos 2 A

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

d: ΔADE đồng dạngvới ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ADE}=30\left(cm^2\right)\)

3 tháng 9 2021

c, Xét tam giác ADB vuông tại D có :

cosA = \(\frac{AD}{AB}=\frac{1}{2}\)

Lại có tam giác AED ~ tam giác ACB 

\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2\Rightarrow\frac{S_{ADE}}{12}=\frac{1}{4}\Rightarrow S_{ADE}=3\)cm2

3 tháng 9 2021

:v bài này dùng cách lớp 8 đc k, mik chưa đc dùng cos

a: Xét ΔAFB vuông tại F và ΔAEC vuông tại E có

góc A chung

=>ΔAFB đồng dạng với ΔAEC

=>AF/AE=AB/AC

=>AF*AC=AB*AE
b: Xét ΔAFE và ΔABC có

AF/AB=AE/AC

góc A chung

=>ΔAFE đồng dạng với ΔABC

c: \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{AF}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{AFE}=25\left(cm^2\right)\)