cho tam giác ABCđều cạnh bằng 8cm, 2 đường phân giác BD,CE gọi P và Q theo thứ tự là trung điểm của BD và CE. tính độ dài đoạn PQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
Bạn tự vẽ hình nha
a) Vì D,E là trung điểm của AC và AB nên ED là đường trung bình của tam giác ABC.
Suy ra ED = \(\frac{BC}{2}\)= \(\frac{4}{2}\)= 2 (cm)
Tứ giác EDCB có ED // BC ( Vì ED là đường trung bình của tam giác ABC) nên EDCB là hình thang.
Vì M, N là trung điểm của EB và CD nên MN là đường trung bình của hình thang EDCB
suy ra MN = \(\frac{ED+BC}{2}\)= \(\frac{2+4}{2}\)=3 (cm).
Vậy MN =3 (cm)
b) Ta có MN// ED ( MN là đương tb củahình thang EDCB) nên MP//ED , QN//ED
Xét tg EBD có MP//ED (cmt)
MB =ME (gt)
Suy ra P là trung điểm của BD ,nên MP là đương tb của tg EBD nên MP= \(\frac{ED}{2}\)=\(\frac{2}{2}\)= 1(cm).
Chứng minh tương tự với tg ECD cũng có QN = 1(cm)
Ta có MN = MP + PQ +QN
3 = 1+PQ +1
QN =1 (cm)
Nên MP=PQ=QN.(đpcm)
Có nhìu chỗ thiếu xót mong mấy bạn thông cảm.
a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)
MN là đường trung bình của hình thang BEDC nên ta có :
\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)
b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)
Vậy MP = NQ = PQ = 1cm
a: Xét hình thang BDEC có
M là trung điểm của BD
N là trung điểm của EC
Do đó: MN là đường trung bình của hình thang BDEC
Suy ra: \(MN=\dfrac{DE+BC}{2}=\dfrac{8+4}{2}=6\left(cm\right)\)