Mọi người giúp mình bài này với:
Tìm X:
a, X + 5/1x4 + 5/4x7 + 5/7x10 +.............+5/97x100 + 5/100x103 + 5/103x106 = 10
b, X x (9/3x7 + 9/7x11 + 9/11x15+.............+9/91x95 + 9/95x99) = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{12}{35}\div\frac{7}{11}-\frac{23}{35}\div\frac{7}{11}-\frac{5}{11}\)
\(=\left(-\frac{12}{35}-\frac{23}{35}\right)\div\frac{7}{11}-\frac{5}{11}\)
\(=-1\div\frac{7}{11}-\frac{5}{11}\)
\(=-\frac{11}{7}-\frac{5}{11}\)
\(=-\frac{156}{77}\)
Bài 1:
$M=3.4.5+4.5.6+...+13.14.15$
$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$
$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$
$=-2.3.4.5+13.14.15.16=43560$
$M=43560:4=10890$
Bài 2:
a.
$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$
$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
$M=\frac{99}{100}:3=\frac{33}{100}$
Tính nhanh
a) 5/1x3 + 5/3x5 + 5/5x7 + ........ + 5/43x45
b) 6/1x4 + 6/4x7 + 6/7x10 + ...... + 6/97x100
\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)
Rút gọn bằng kiểu nào?
\(P=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(P=\frac{5}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n+3}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
...
P=\(\frac{5}{3x7}\) +\(\frac{5}{7x11}\)+\(\frac{5}{11x15}\)+...+\(\frac{5}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{4}{3x7}\)+\(\frac{4}{7x11}\)+\(\frac{4}{11x15}\)+...+\(\frac{4}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{11}\)+...+\(\frac{1}{4n-1}\)-\(\frac{1}{4n+3}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{4n+3}\)
P=\(\frac{5}{12}\)-\(\frac{5}{16n+12}\)
1. -x+20 = -(-15)-8+13
=> -x=15-8+13-20
=> -x=0
=> x=0
2. -(-10)+x=-13+(-9)+(-6)
=> 10+x=-13-9-6
=> x = -13-9-6-10
=> x = -38
3. 8-(-12)+10=-(-14)-x
=> 8+12+10=14-x
=> x = 14-8-12-10
=> x = -16
4. -(+12)+(-x)-(-3)=5-(-7)
=> -12-x+3=5+7
=> -x=5+7+12-3
=> -x=21
=> x=-21
5. 14-x+(-10)=-(-9)+(+15)
=> 14-x-10=9+15
=> -x=9+15-14+10
=> -x=20
=> x=-20
6. 12-(-17)+(-3)=-5+x
=> 12+17-3+5=x
=> x=31
7. x-(-19)-(+32)=14-(+16)
=> x+19-32=14-16
=> x=14-16+32-19
=> x=11
8. x-|-15|-|7|=-(-9)+|-5|
=> x-15-7=9+5
=> x=9+5+7+15
=> x=36
9. 15-x+17=13-(-21)
=> 15-x+17=13+21
=> -x=13+21-15-17
=> -x=2
=> x=-2
10. -|-5|-(-x)+4=3-(-25)
=> -5+x+4=3+25
=> x=3+25-4+5
=> x=29
a. \(\dfrac{x}{5}=\dfrac{8}{10}\)
\(\Rightarrow10x=8.5\)
\(\Rightarrow10x=40\)
\(\Rightarrow x=\dfrac{40}{10}=4\)
b. \(\dfrac{9}{x}=\dfrac{90}{100}\)
\(\Rightarrow9.100=90x\)
\(\Rightarrow900=90x\)
\(\Rightarrow x=\dfrac{900}{90}=10\)
c. \(17+\dfrac{x}{35}=\dfrac{5}{7}\)
\(\Rightarrow\dfrac{595+x}{35}=\dfrac{25}{35}\)
\(\Rightarrow595+x=25\)
\(\Rightarrow x=25-595=-570\)
d. \(x:\dfrac{5}{27}=\dfrac{2}{9}\)
\(\Rightarrow\dfrac{27x:5}{27}=\dfrac{6}{27}\)
\(\Rightarrow27x:5=6\)
\(\Rightarrow27x=5.6\)
\(\Rightarrow27x=30\)
\(\Rightarrow x=\dfrac{30}{27}=\dfrac{10}{9}\approx1,11\)
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)