6) cho tỉ lệ thức a/b=c/d. chứng minh:
a) (5a+5b)/5b = ((c^2)+cd)/cd
b) (a^2)/(b^2)=(a^2-ac)/(b^2)-bd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
Bài 1 :
a ) Vì tam giác ABC có chu vi bằng 24
=> AB + AC + BC = 24
hay a + b + c = 24
Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5
=> a/3 = b/4 = c/5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2
=> a = 6 ; b = 8 ; c = 10
b ) Vì a = 6 => a2 = 36
b = 8 => b2 = 64
c = 10 => c2 = 100
MÀ 100 = 36 + 64 hay c2 = a2 + b2
Xét tam giác ABC có c2 = a2 + b2 ( cmt )
=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )
Vậy ...
Bài 2 :
Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt
Khi đó :
\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )
\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có dpcm
b ) ( chứng minh tương tự )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{5b\left(k+1\right)}{5b}=k+1\)
\(\frac{c^2+cd}{cd}=\frac{k^2d^2+kd^2}{kd^2}=\frac{kd^2\left(k+1\right)}{kd^2}=k+1\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\)\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1\)
\(\frac{c^2+cd}{cd}=\frac{c^2}{cd}+\frac{cd}{cd}=\frac{c}{d}+1\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\Rightarrowđpcm\)
d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)
\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)
Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
a)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)
c)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)
\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!