K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Xét \(P=\sqrt{2x-x^2+3}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\le\sqrt{4}=2\)

ĐK: \(\left(x-1\right)^2\le4\Leftrightarrow-2\le x-1\le2\Leftrightarrow-1\le x\le3\)

GTNN của P = 0 khi x = -1 hoặc 3 => GTLN của y = 3/2

GTLN của P = 2 khi x = 1 => GTNN của y = 3/4.

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

28 tháng 6 2019

A=\(\frac{3}{12-2x-x^2}\)

=\(\frac{3}{-\left(x^2+2x\right)+12}=\frac{3}{-\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+12+\frac{1}{4}}=\frac{3}{-\left(x+\frac{1}{2}\right)^2+\frac{49}{4}}\le\frac{3}{\frac{49}{4}}=\frac{12}{49}\)

Dấu = xảy ra khi : -(x+\(\frac{1}{2}\))2=0

\(\Leftrightarrow\)x=\(-\frac{1}{2}\)

Vậy Max A = \(\frac{12}{49}\Leftrightarrow x=-\frac{1}{2}\)

28 tháng 6 2019

bạn nhớ tick và theo dõi mk nhé

12 tháng 12 2016

\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|-\left|x+1\right|\)

+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)

+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)

+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)

\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)

Ta thấy:

  • Với \(x\ge1\) ta tìm được \(Min_y=-2\)
  • Với \(x< -1\) ta tìm được \(Max_y=2\)

 

 

 

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

1.

\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)

Dễ thấy:

$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$

Vậy $y_{\max}=\sqrt{5}$

$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$

Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$

$=1+\frac{1}{4}\sin 4x$

Vì $-1\leq \sin 4x\leq 1$

$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$

$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$