Tính giá trị biểu thức:
Biết a-b=7. Tính: A=a2(a+1)-(b2b-1)+ab-3ab(a-b-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
Thay a + b = 1 vào biểu thức trên ,có :
1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1
=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2
=1
Vậy biểu thức M có giá trị bằng 1 khi a + b = 1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
nhwos tick nha :D
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)�=�3+�3+3��(�2+�2)+6�2�2(�+�)
Biến đổi:
a2+b2=a2+2ab+b2−2ab=(a+b)2−2ab�2+�2=�2+2��+�2−2��=(�+�)2−2��
a3+b3=(a+b)(a2−ab+b2)�3+�3=(�+�)(�2−��+�2)
Thay a+b=1�+�=1 và phần biến đổi vào biểu thức, ta được:
M=(a+b)(a2−ab+b2)+3ab.[(a+b)2−2ab]+6a2b2�=(�+�)(�2−��+�2)+3��.[(�+�)2−2��]+6�2�2
⇒M=a2−ab+b2+3ab.[1−2ab]+6a2b2⇒�=�2−��+�2+3��.[1−2��]+6�2�2
⇒M=a2−ab+b2+3ab−6a2b2+6a2b2⇒�=�2−��+�2+3��−6�2�2+6�2�2
⇒M=a2+2ab+b2⇒�=�2+2��+�2
⇒M=(a+b)2⇒�=(�+�)2
⇒M=1
M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2
M=a2-ab+b2+3ab
M=(a+b)2=1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
\(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
=1
\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)
a) \(a^2+2a+b^2-2b-2ab=\left(a-b\right)^2+2\left(a-b\right)\)
Thay a-b=7 vào trên ta được:
7^2+2*7=63