K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

\(\left(x+3\right)\left(1-x\right)>0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0.\\1-x>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0.\\1-x< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3.\\x< 1.\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3.\\x>1.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 1.\)

\(\left(x^2-1\right)\left(x^2-4\right)< 0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1< 0.\\x^2-4>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1>0.\\x^2-4< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2< 1.\\x^2>4.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2>1.\\x^2< 4.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1.\\x>-1.\end{matrix}\right.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\\left[{}\begin{matrix}x< 2.\\x>-2.\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-1< x< 1.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\-2< x< 2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2.\\x< -2.\\-2< x< -1.\\1< x< 2.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< -2.\\x>2.\end{matrix}\right.\)

2 tháng 3 2022

a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-21-13-3
x315-1

b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

x-21-113-13
x3115-11

 

c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+71-12-2
x-6-8-5-9

 

7 tháng 6 2020

a) x<y

<=> x.x<x.y
<=> x\(^2\)<xy

x<y
<=> x.y<y.y
<=>xy<y\(^2\)

b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)

<=> x\(^2\)<y\(^2\)

x\(^2\)<y\(^2\)

=> x\(^2\).y<y\(^2\).y

<=> x\(^2\)y<y\(^3\)(1)

x\(^2\)<y\(^2\)

=> x\(^2\).x<y\(^2\).x

<=> x\(^3\)<xy\(^2\)(2)
x<y

<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)

Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

=>(x+3)(x+4)>=0

=>x+3>=0 hoặc x+4<=0

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

=>x-2>0 hoặc x-1<=0

=>x>2 hoặc x<=1

d: \(\dfrac{x+3}{2-x}>=0\)

=>\(\dfrac{x+3}{x-2}< =0\)

=>x+3>=0 và x-2<0

=>-3<=x<2

15 tháng 7 2017

a)\(\left(x2+7\right).\left(x2-49\right)< 0\)

\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\)\(\left(x2-49\right)\) khác dấu nhau .

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)

\(\left(x2+7\right)\) > \(\left(x2-49\right)\)

Nên ta có:

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)

Vậy hai số nguyên đó là -7 và 49 .

Còn phần còn lại bạn làm tương tự nhé banhqua !

30 tháng 1 2018

      \(\left(x-3\right)\left(4-x\right)>0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\)  (vô lí)

hoặc    \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)

Vậy      \(x=\Phi\)

8 tháng 12 2022

a

26 tháng 2 2022

Cho phương trình: x^2 -2(m+1)x + 4m=0a.Chứng minh rằng phương trình luôn luôn có no với mọi mb.Giari phương trình khi m=2c.Tìm m để phương trình

Cho phương trình: x^2 -2(m+1)x + 4m=0 a.Chứng minh rằng phương trình luôn luôn có no với mọi m b.Giari phương trình khi m=2 c.Tìm m để phương trình có 1no x= -2 ѵà tìm no còn lại d.Tìm k để x1^2 + x2^2 = 5

       

Đáp:

26 tháng 7 2017

viết kiểu gì khó hiểu quá

26 tháng 7 2017

Ta có : (x - 3)(x - 2) < 0

Nên sảy ra 2 trường hợp : D

Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)

Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)

Vậy 2 < x < 3