Cho x>1. tìm giá trị nhỏ nhất của A= 4x+ {eq\f(25,x-1)|}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)
Anh ơi giúp em vc này https://hoc24.vn/cau-hoi/admin-oi-xu-ly-ho-em-avt-cua-ban-nay-aban-theo-doi-em-nen-em-vao-xem-thu-trang-ca-nhan-va-tot-nhat-admin-nen-xem-se-hieuhttpshoc24vnviptienganhlamontu.330703432754
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
\(A=4\left(x-1\right)+\frac{1}{x-1}-1\ge2\sqrt{\frac{4\left(x-1\right)}{x-1}}-1=3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(4\left(x-1\right)^2=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\left(loai\right)\\x=\frac{3}{2}\left(nhan\right)\end{cases}}\)