tìm x,y (x,y\(\in\)N*) biết 1/x+1/y=1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
Sửa đề bài: \(2^x=8^{y+1}\)và \(9^y=3^{x-9}\)
Có: \(2^x=8^{y+1}\)
\(\Leftrightarrow2^x=\left(2^3\right)^{y+1}\)
\(\Leftrightarrow2^x=2^{3y+3}\)
\(\Leftrightarrow x=3y+3\) (1)
Lại có: \(9^y=3^{x-9}\)
\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)
\(\Leftrightarrow3^{2y}=3^{x-9}\)
\(\Leftrightarrow2y=x-9\) (2)
Thay (1) vào (2), ta có:
=> 2y = 3y + 3 - 9
=> 2y = 3y - 6
=> 2y - 3y = -6
=> -1y = -6
=> y = 6 \(\left(y\in N\right)\)
Từ x = 3y + 3 (theo điều 1)
=> x = 3.6 + 3 = 21 \(\left(x\in N\right)\)
Vậy x + y = 21 + 6 = 27
\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)
bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)
câu sau tương tự
\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)
\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)
\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)
\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)
\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)
\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)
Tìm đc (y;z)=(4;4);(3;6)
\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
Nếu \(y=3=>z=3\)
Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng
2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^x.2^1.3^y=12^x\)
\(\Rightarrow2.3y=12^x:2^x=\left(12:2\right)^x=6^x\)
\(\Rightarrow2.3^y=2^x.3^x\)
\(\Rightarrow3^y:3^x=2^x:2\)
\(\Rightarrow3^{y-x}=2^{x-1}\)
Do : \(3\ne2\)nên : \(y-x=x-1=0\)
\(\Rightarrow x=0+1=1\)
\(\Rightarrow y=0+1=1\)
\(2^{x+1}.3^y=12^x\)
\(2^{x+1}.3^y=\left(2^2.3\right)^x\)
\(2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\frac{3^y}{3^x}=\frac{2^{2x}}{2^{x+1}}\)
\(\Leftrightarrow3^{y-x}=2^{x-1}\)
Vì x, y thuộc N
\(pt\Leftrightarrow\hept{\begin{cases}y-x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow x=y=1\)
viết lại đề :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
vì vai trò của x,y là như nhau,ko mất tính tổng quát,ta giả sử: \(1\le x\le y\left(do..x;y\inℕ^∗\right)\)
thay x,y bởi x ta có:\(\frac{1}{x}+\frac{1}{x}\ge\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(do \(x\le y\) nên theo TC của phân số thì \(\frac{1}{x}+\frac{1}{x}\ge\frac{1}{x}+\frac{1}{y}\))
\(\Leftrightarrow\frac{2}{x}\ge\frac{1}{3}\Leftrightarrow x\le6\Rightarrow1\le x\le6\)
ta lại có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{1}{x}>\frac{1}{3}\Leftrightarrow3< x\le6\)
ta có 3TH:
\(x=4\Leftrightarrow\frac{1}{4}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{1}{y}=\frac{1}{12}\Leftrightarrow y=12\left(TM\right)\)
\(x=5\)bạn thay vào thì y=2/15(ko TM)
\(x=6\),ta sẽ tìm đc y=6(TM)
vậy(x;y)cần tìm là (4;12),(6;6) và (12;4)