Tìm n thuộc Z sao cho n + 5 chia hết cho 2n - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2n-3\right)⋮\left(n-5\right)\\ \Rightarrow\left[2\left(n-5\right)+7\right]⋮\left(n-5\right)\\ mà:\left[2\left(n-5\right)\right]⋮\left(n-5\right)\\ \Rightarrow7⋮\left(n-5\right)\\ \Rightarrow\left(n-5\right)\inƯ\left(7\right)\\ \Rightarrow\left(n-5\right)\in\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-2;4;6;12\right\}\)
Vậy \(n\in\left\{-2;4;6;12\right\}\)
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
2n + 8 chia hết cho n + 1
=> 2n + 2 + 6 chia hết cho n + 1
=> 2(n + 1) + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1 (Vì 2(n + 1) chia hết cho n + 1)
=> n + 1 thuộc {-1; 1; -2; 2; -3; 3; -6; 6}
=> n thuộc {-2; 0; -3; 1; -4; 2; -7; 5}
Ta có : ` 2n-8 \vdots n+1 ` và ` n+1 \vdots n+1 ` ` => ` ` 2n-8 \vdots n+1 ` và ` 2n+2 \vdots n+1 ` ` => ` ` ( 2n+2 ) - ( 2n-8) \vdots n+1 ` ` <=> ` ` 10 \vdots n+1 ` ` <=> ` ` n+1 in { -10 ; -5;-2;-1;1;2;5;10} ` ` => ` ` n in {-11;-6;-3;-2;0;1;4;9} `
(n+ 5) chia hết (2n-1)
=> 2( n+5) chia hết (2n-1) Giải thích k cần ghi vào bài làm ( Vì trong 1 tích chỉ cần 1 số chia hết cho số đó thì cả tích cũng chia hết cho số đó
=> (2n+ 10 ) chia hết (2n-1)
=> (2n - 1 +11 ) chia hết ( 2n-1)
=> 11 chia hết (2n-1)
=> 2n-1 E Ư ( 11)
Vậy 2n-1 = { -1;-11;1;11}
Nếu : 2n-1 = -1 => n = 0
2n-1 = -11 => n = -5
2n-1 = 11 => n = 6
2n-1 = 1 => n = 1
=> n = 0;1;-5;6
bạn ghi lại đề dc k ạ