Biết a+b*c=33, c+a*b=23. Tính giá trị của b+a*c?
Các bạn giúp mình nhé, mình cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a...
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8
\(\text{A= 73 - (35 + 1𝑎) : 23}\)
thay \(a=45\) vào biểu thức ta có:
\(A=73-\left(35+45\right):23\)
\(=73-\frac{80}{23}=\frac{1599}{23}\)
b)\(73-\left(35+1a\right):23=1715\)
\(\left(35+1a\right):23=-1642\)
\(35+a=-37766\)
\(a=-37801\)
c) Ta có: M < 4 => 13,8 : ( 5,6 - x ) < 4
=> 5,6 - x < 13,8:4
5,6 - x < 3,45
x < 5,6 - 3,45
x < 2,15
Vậy x < 2,15
a) Ta có: -a - b - b = -a - b + c
Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2
b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2
\(x^3-5x^2+8x-4.\)
\(=x^3-4x^2-x^2+4x^2+4x^2-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x^2-4x+4\right)\left(x-1\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Cảm ơn bạn nhiều
Bạn có thể giúp mình phần còn lại đc hem ? ^.^
Cần thêm điều kiện a,b,c khác 0
Từ giả thiết ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right).\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Suy ra a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Mặt khác, 23 , 5 , 2017 là các số mũ lẻ nên \(a^{23}+b^{23}=\left(a+b\right).A=0.A=0\)( Vì a + b = 0 - chứng minh trên)
Suy ra P = 0
Tương tự với các trường hợp còn lại , ta cũng có kết quả tương tự.
???????????????????câu này khó quá????????????????????????????