K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2022

\(4m_a^2=b\left(b+4c.cosA\right)=b^2+4bc.cosA\)

\(\Leftrightarrow4\left(\dfrac{2b^2+2c^2-a^2}{4}\right)=b^2+4bc.\dfrac{b^2+c^2-a^2}{2bc}\)

\(\Leftrightarrow2b^2+2c^2-a^2=b^2+2\left(b^2+c^2-a^2\right)\)

\(\Leftrightarrow a^2=b^2\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\Delta ABC\) cân tại C

Ta có: ΔABC cân tại A(gt)

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

\(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

\(\Rightarrow\)BD=CE(hai cạnh tương ứng)

14 tháng 4 2020

Hỏi đáp Toán

14 tháng 4 2020

image

3:

a: góc E=100 độ

=>góc B=100 độ

b: DG=AC=5cm

10 tháng 3 2020

ABCDE

a) Ta có : BE // AC

\(\Rightarrow\)^AEB = ^EAC

\(\Rightarrow\)^AEB = ^BAE (= ^EAC)

\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = BE (△AEB cân tại B)

\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)

c) Xét △ABC có AD là tia phân giác của góc A

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)

d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)

\(\Rightarrow DB=1,5\)

Vậy DB = 1,5 cm

Giúp với Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE a) Chứng minh tam giác ABD đồng dạng tam giác ACE b) Chứng minh tam giác ADE đồng dạng tam giác ABC c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2 Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC b) Chứng...
Đọc tiếp

Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK

0