1/4+1/8+1/16+1/32+1/64+1/128.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X x (1/2+1/4+1/8+1/16+1/32+1/64+1/128) = 127/128
X x 127/128 = 127/128
X = 127/128 : 127/128
X = 1
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{4+2+1}{16}+\frac{4+2+1}{128}\)
\(=\frac{7}{16}+\frac{7}{128}\)
\(=\frac{56+7}{128}\)
\(=\frac{63}{128}\)
Nhớ k cho mình với nhé!
A = 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
A x 2 = 1/4 - ( 1/4 + 1/8 + 1/16 + .............. + 1/64 + 1/128 ) - 1/128
A x 2 = 1/4 - A - 1/128
A x 2 - A = 1/4 - 1/128
A = 1/4 - 1/128
A = 31/128
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
C= \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
2C = \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
2C-C = \(1-\dfrac{1}{128}\)
C= \(\dfrac{127}{128}\)
C= 12+14+18+116+132+164+112821+41+81+161+321+641+1281
2C = 1+12+14+18+116+132+1641+21+41+81+161+321+641
2C-C = 1−11281−1281
C= 127128128127
S=1/4+1/8+1/16+1/32+1/64+1/128
\(S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
\(2S=2\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(2S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(2S-S=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(S=\frac{1}{2}-\frac{1}{2^7}\)
S=(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)
S=1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128
S=1/2-(1/4-1/4)+(1/8-1/8)+(1/16-1/16)+(1/32-1/32)+(1/64-1/64)-1/128
S=1/2-1/128
S=63/128
Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A-A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\frac{127}{128}\)
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\frac{32+16+8+4+2+1}{128}=\frac{63}{128}\)
Đặt A=1/4+1/8+1/16+1/32+1/64+1/128.
\(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
\(2A=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^7}\)