Cho x= a/b , y= c/d , z= ( a+c)/ 2b , b >0
Biết x<y. CMR x<z<y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x ; y và z
Ta có : \(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-20}\)\(\Rightarrow\frac{80}{2x-60}=\frac{60}{3y-150}=\frac{28}{z-20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(=\frac{80+60-28}{\left(2x-60\right)+\left(3y-150\right)-\left(z-21\right)}=\frac{140-28}{2x-60+3y-150-z+21}\)
\(=\frac{112}{\left(2x+3y-z\right)-\left(60+150-21\right)}=\frac{112}{\left(-34\right)-189}=\frac{112}{-224}=-\frac{1}{2}\)
Tự làm nốt
Tính M
Có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\). Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)
\(\Rightarrow M=\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=4\left(\frac{2a-a}{a+a}\right)\)
\(=4\left(\frac{a}{2a}\right)=4.\frac{1}{2}=2\) Vậy \(M=2\)
1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)
\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)
\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)
\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)
\(\Leftrightarrow-zy+x^2=-x^2+yz\)
\(\Leftrightarrow-2x^2=-2zy\)
\(\Leftrightarrow x^2=yz\)(đpcm)