Đề bài :Cho 10k-1 chia hết cho 19 với k>1 .Chứng tỏ rằng (102k-1 ) chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
10k - 1 chia hết cho 19 nên 10k = 19m + 1
k cho mik nha Hiền xinh đẹp ^_<
Theo một tính chất cơ bản ta dễ có:
\(10^{2k}-1=\left(10^k\right)^2-1⋮10^k-1⋮19\)
Suy ra đpcm
102k - 1 = (10k)2 - 1
= ( 10k - 1 ) ( 10k + 1 ) chia hết cho 19 vì 10k - 1 chia hết cho 19.
10k -1 chia hết cho 19 => 10k - 1 = 19n
=> 10k = 19n + 1 => 102k = (10k)2 = (19n + 1)2 = (19n + 1)(19n + 1) = 361n2 + 38n + 1
=> 102k - 1 = 361n2 + 38n + 1 - 1 = 361n2 + 38n chia hết cho 19 => 102k - 1 chia hết cho 19