K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

(x+1)+(x+3)+.........+(x+49)=700

x+1+x+3+........+x+49=700

25x+(1+3+5+......+49)=700

25x+625=700

25x=700-625

25x=75

x=75:25

x=3

2x+4x+6x+...........+100x=5100

(2+4+6+....+100)x=5100

2550x=5100

x=5100:2550

x=2

28 tháng 6 2016

Phải tính cả cụm luôn hả bạn

2 tháng 7 2018

\(2x+4x+6x+........+98x+100x=51.10^2\)

\(\Rightarrow x\left(2+4+6+.........+98+100\right)=51.100\)

\(\Rightarrow x.2550=5100\)

\(\Rightarrow x=5100:2550\)

\(\Rightarrow x=2\)

Vậy x = 2

2 tháng 7 2018

\(2x+4x+6x+...+100x=51.10^2\)

\(\Rightarrow x\left(2+4+...+100\right)=5100\)

\(\Rightarrow x\left(\frac{\left[\left(100-2\right):2+1\right].\left(100+2\right)}{2}\right)=5100\)

\(\Rightarrow x\left(\frac{50.102}{2}\right)=5100\)

\(\Rightarrow\frac{5100x}{2}=5100\)

\(\Rightarrow5100x=5100.2\)

\(\Rightarrow x=2\)

15 tháng 10 2016

a)\(3^{x-2}+3^x=810\)

\(\Leftrightarrow3^x\left(3^{-2}+1\right)=810\)

\(\Leftrightarrow3^x\cdot\frac{10}{9}=810\)

\(\Leftrightarrow3^x=729\)

\(\Leftrightarrow3^x=3^6\)

\(\Leftrightarrow x=6\)

 

15 tháng 10 2016

b)402240223.(x2-1)=804480443

\(\Leftrightarrow x^2-1=80448044^3:40224022^3\)

\(\Leftrightarrow x^2-1=\left(\frac{80448044}{40224022}\right)^3\)

\(\Leftrightarrow x^2-1=2^3\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow x=\pm3\)

 

18 tháng 7 2019

CHIỀU NGÀY 18/7/2019 TÔI SẼ CHO BẠN KẾT QUẢ

24 tháng 7 2019

e/ 

  (2+4+6+......+98+100)x=5100

    (2+4+6+......+98+100)x =5100

                 50 số hạng

(2 +100 ) + (4+98) +......+ (50+52) x=5100

(   102      +  102   +.......+   102 ) x =5100

                   25 số

102 *25x=5100

x             =5100 :2550

x            =2

16 tháng 6 2017

a)\(3x^2-8x+4\)

\(=3x^2-2x-6x+4\)

\(=x\left(3x-2\right)-2\left(3x-2\right)\)

\(=\left(x-2\right)\left(3x-2\right)\)

b)\(4x^4+81\)

\(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

c)\(x^8+98x^4+1\)

\(=\left(x^8+2x^4+1\right)+96x^4\)

\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

d)\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)

18 tháng 9 2021

b. 6x(x - 5) - x(6x + 3)

= x(6x - 30) - x(6x + 3)

= x(6x - 30 - 6x - 3)

= x(-33)

= -33x

19 tháng 9 2021

\(1,\\ a,=-35x^5y^4z\\ b,=6x^2-30x-6x^2-3x=-33x\\ c,=x^3-9x^2-2x^2+18x-x+9=x^3-11x^2+17x+9\\ 2,\\ A\left(x\right)+B\left(x\right)=10-2x+4x^3-5x^2-10x^3-5x+6x^2-20\\ =-6x^3+x^2-7x-10\\ A\left(x\right)-B\left(x\right)=10-2x+4x^3-5x^2+10x^3+5x-6x^2+20\\ =14x^3-11x^2+3x+30\\ 3,\\ a,M\left(x\right)=5x+20=0\\ \Leftrightarrow x=-4\\ b,N\left(x\right)=100x^2-49=0\\ \Leftrightarrow\left(10x-7\right)\left(10x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\\ c,P\left(x\right)=3x-15=0\\ \Leftrightarrow x=5\)

Bài 1;

a)\(5x^3yz.\left(-7x^2y^3\right)=-35.x^5y^4z\)

b)\(6x\left(x-5\right)-x\left(6x+3\right)=6x^2-30x-6x^2-3x=-33x\)

c) \(\left(x-9\right)\left(x^2-2x-1\right)=x^3-2x^2-x-9x^2+18x+9=x^3-11x^2+17x+9\)

22 tháng 1 2019

a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)

b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x\left(x-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;4\right\}\)

c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)

\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)

d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)

e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)

g. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)