Cho x,y>0 thoả mãn x+y+xy=1
Tìm GTNN của \(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Làm giúp mik với. chìu nay mik đi hok tùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x+y=1\)\(\Rightarrow x=1-y\)
Khi đó: \(P=\left(1-y\right)^3+y^3+\left(1-y\right)y\)
\(=1-3y+3y^2-y^3+y^3+y-y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)-\frac{1}{2}+1\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)
Suy ra \(P\ge10\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P = 10 khi x = y = 1/2
Suy ra P≥10
Dấu "=" xảy ra khi và chỉ khi {
x+y=1 |
x=y |
⇔x=y=12
Vậy Min P = 10 khi x = y = 1/2
Ta có:
\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Rightarrow A=xy\ge4\)
Dấu = xảy ra khi x = y = 2