K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2015

 B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
 

18 tháng 3 2017

mình giống nguyễn quỳnh nga

\(A=3^1+3^2+3^3+...+3^{2010}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2011}\)

\(\Rightarrow2A=3^{2011}-3\)

\(\Rightarrow A=\frac{3^{2011}-2}{2}\)

\(\Leftrightarrow2A+3=3^{2011}-3+3=2^{2011}\)

\(\Rightarrow x=2011\)

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

25 tháng 6 2015

3A=3^2+3^3+...+3^2007

=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)

=>2A=3^2007-3^1=3^2007-3

=>2A+3=3^2007-3+3=3^2007=3^x

=>x=2007

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

30 tháng 9 2015

A = 3100 + 3

30 tháng 9 2015

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+...+3^{100}+3^{101}\)

\(3A-A=3^2+3^3+...+3^{100}+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(2A+3=3n\)

\(\Rightarrow3^{101}-3+3=3n\)

\(\Rightarrow3^{101}=3n\)

\(\Rightarrow n=3^{100}\)

 

 

30 tháng 9 2015

3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101