cm n thuộc Z+ thì 62n+19n-2n+1 chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số tự nhiên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮6\)
=>A chia hết cho 6
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow x^2-9=2x^2+12x+18\)
\(\Leftrightarrow x^2-2x^2-12x=18+9\)
\(\Leftrightarrow-x^2-12x=27\)
\(\Leftrightarrow x^2+12x+27=0\)
\(\Leftrightarrow\left(x+6\right)^2=9=3^2=\left(-3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=3\\x+6=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-9\end{cases}}\)
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
Ta có
32010=(33)670≡1670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005≡(−1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13
Ta thấy : \(6^{2n}+19^n-2^{n+1}=36^n+19^n-2.2^n=36^n-2^n+19^n-2^n\)
\(=34.\left(36^{n-1}+...+2^{n-1}\right)+17\left(18^{n-1}+...+2^{n-1}\right)\)
Dễ thấy biiểu thức trên chia hết cho 17 (đpcm).