\(\sqrt{1-2011x}+\sqrt{1+2011x}=\sqrt{x+1}+\frac{1}{\sqrt{x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)
\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)
\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)
\(ĐKXĐ:x\ge0\)
Ta có : \(D=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Theo BĐT AM - GM ta có :
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)
\(\Rightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\left(\sqrt{2011}-1\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)
Vậy \(D_{min}=2\left(\sqrt{2011}-1\right)\) tại \(x=\frac{1}{2011}\)
ĐKXĐ : \(x\ge0\)
Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)
\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng BĐT AM - GM cho hai số dương ta có :
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)
Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)
Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)
\(ĐK:x>0\)
Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)
\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)
Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)
Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)
\(b,ĐKXĐ:x>0\)
\(D=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng bđt Cauchy cho 2 số dương \(2011\sqrt{x}\)và\(\frac{1}{\sqrt{x}}\)ta được:
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}.\frac{1}{\sqrt{x}}}\)
\(\Leftrightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{2011}-2\)
\(\Leftrightarrow D\ge2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\left(TMĐK\right)\)
\(B=2x+3\sqrt{x}-28\)
Ta có điều kiện: \(x\ge0\)
Do đó \(B\ge2\cdot0+3\cdot0-28=-28\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(C=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
\(C=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)
Áp dụng bất đẳng thức Cô-si :
\(C\ge2\sqrt{\frac{2011\sqrt{x}}{\sqrt{x}}}-2=2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\)
Đặt \(\sqrt{2x-1}=a\ge0\)
Ta có \(2011x^2-a^2=2010xa\)
\(\Leftrightarrow\left(2010x^2-2010xa\right)+\left(x^2-a^2\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(2010x+x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=a\\2011x=-a\left(loai\right)\end{cases}}\)
\(\Leftrightarrow x=1\)
Đkxđ : \(\frac{-1}{2011}\le x\le\frac{1}{2011}\)
Trước hết ta chứng minh \(a+b=2\)thì GTLN của \(\sqrt{a}+\sqrt{b}=2\)
Thật vậy ta có \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\le a+b+2\frac{a+b}{2}=2+2=4\)
Do đó GTLN của \(\sqrt{a}+\sqrt{b}=2\)khi \(a=b\)
Áp dụng kết quả trên với \(a=1-2011x,b=1+2011x\)ta có \(a+b=2\)
suy ra \(\sqrt{1-2011x}+\sqrt{1+2011x}\le2\)
Áp dụng bất đẳng thức cô- si cho hai số không âm \(\sqrt{x+1}\)và \(\frac{1}{\sqrt{x+1}}\)ta có :
\(\sqrt{x+1}+\frac{1}{\sqrt{x+1}}\ge2\sqrt{\sqrt{x+1}.\frac{1}{\sqrt{x+1}}}=2\)
Như vậy VP = VT khi \(\hept{\begin{cases}\sqrt{x+1}=\frac{1}{\sqrt{x+1}}\\\sqrt{1-2011x}=\sqrt{1+2011x}\end{cases}}\Leftrightarrow x=0\left(tm\right)\)
Vậy \(x=0\)là nghiệm của phương trình.