cho x=căn(2+căn(2+căn3))-căn(6-3.căn(2+căn3)). Tính giá trị của S=x4-16x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
Em phải viết bằng công thức toán học biểu tượng \(\Sigma\) góc trái màn hình
Hoặc em viết bằng tay chụp ảnh up lên em nhé
Chứ thế này cô ngồi nãy giờ vẫn không biết chính xác biểu thức em cần rút gọn là như thế nào
Thân mến!
\(2\sqrt{6}+\sqrt{3}+4\sqrt{2}+3\)
\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(3\sqrt{2}+3+\sqrt{6}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{18}+\sqrt{9}+\sqrt{6}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{3.6}+\sqrt{3.3}+\sqrt{3.2}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\)
\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)