K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 3 2021

1) \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)là số nguyên khi \(\frac{5}{3n+2}\)là số nguyên 

suy ra \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-\frac{7}{3},-1,-\frac{1}{3},1\right\}\)mà \(n\)nguyên suy ra 

\(n\in\left\{-1,1\right\}\).

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}

1 tháng 9 2021

???

bạn ko lm để người khác làm nha

5 tháng 5 2015

\(\Rightarrow\)(6n-1)chc(3n+2)

Mà (6n+4)chc(3n+2) 

\(\Rightarrow\) (6n+4-6n+1)chc(3n+2)\(\Rightarrow\)5 chc(3n+2) 

Lập bảng để suy ra n{-1,1}

 

17 tháng 3 2018

Vay 6n-1 chia het cho 3n+2

2(3n+2)-5 chia het cho 3n+2

Ma 2(3n+2)chia het cho 3n+2 nen -5 chia het cho 3n+2

=>3n+2 thuoc Ư(-5)={1;-1;5;-5}

Sau do ban thay 3n+2 vao la tim duoc n (neu thu khong ra so nguyen thi ban loai)

15 tháng 3 2022

Ta có :

\(A=\frac{\left(6n-3\right)}{\left(3n+1\right)}=\frac{2\left(3n+1\right)-5}{\left(3n+1\right)}=2-\frac{5}{\left(3n+1\right)}.\)

Để \(A\)là số nguyên thì \(\frac{5}{\left(3n+1\right)}\)nguyên hay \(5⋮3n+1\)

Do đó \(\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

Lại có \(3n+1⋮3\)dư 1 nên \(\left(3n+1\right)\in\left\{1;-5\right\}\)hay \(n\in\left\{0;2\right\}\)

Vậy các số nguyên n thỏa mãn \(A\)có giá trị nguyên khi \(n=0\)hoặc \(n=2\)

15 tháng 3 2022

=(6n-1) chia hết cho (3n+2)

Mà (6n+4) chia hết cho(3n+2)

=(6n+4-6n+1) chia hết cho (3n+2)=5 chia hết cho(3n+2)

Lập bảng đề suy ra n{-1,1}

21 tháng 5 2020

n=1

A=-5

8 tháng 3 2018

\(\frac{6n+9}{3n}=2+\frac{9}{3n}=2+\frac{3}{n}\in N\) 

=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)

9 tháng 5 2018

gọi d \(\in\)UC(6n+1;3n+2)

\(\Rightarrow6n+1-2\left(3n+2\right)⋮d\)

\(\Rightarrow6n+1-6n-4⋮d\)

\(\Rightarrow-3⋮d\Rightarrow d\in u\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lập bảng:

\(6n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-\frac{1}{3}\)\(\frac{1}{2}\)\(-\frac{2}{3}\)

A là số nguyên \(\Rightarrow\)n = { \(-\frac{1}{3}\)}