Cho A= 6n+9/ 3n+2
1)Tìm n để A là số nguyên
2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
\(\Rightarrow\)(6n-1)chc(3n+2)
Mà (6n+4)chc(3n+2)
\(\Rightarrow\) (6n+4-6n+1)chc(3n+2)\(\Rightarrow\)5 chc(3n+2)
Lập bảng để suy ra n{-1,1}
Vay 6n-1 chia het cho 3n+2
2(3n+2)-5 chia het cho 3n+2
Ma 2(3n+2)chia het cho 3n+2 nen -5 chia het cho 3n+2
=>3n+2 thuoc Ư(-5)={1;-1;5;-5}
Sau do ban thay 3n+2 vao la tim duoc n (neu thu khong ra so nguyen thi ban loai)
Ta có :
\(A=\frac{\left(6n-3\right)}{\left(3n+1\right)}=\frac{2\left(3n+1\right)-5}{\left(3n+1\right)}=2-\frac{5}{\left(3n+1\right)}.\)
Để \(A\)là số nguyên thì \(\frac{5}{\left(3n+1\right)}\)nguyên hay \(5⋮3n+1\)
Do đó \(\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
Lại có \(3n+1⋮3\)dư 1 nên \(\left(3n+1\right)\in\left\{1;-5\right\}\)hay \(n\in\left\{0;2\right\}\)
Vậy các số nguyên n thỏa mãn \(A\)có giá trị nguyên khi \(n=0\)hoặc \(n=2\)
=(6n-1) chia hết cho (3n+2)
Mà (6n+4) chia hết cho(3n+2)
=(6n+4-6n+1) chia hết cho (3n+2)=5 chia hết cho(3n+2)
Lập bảng đề suy ra n{-1,1}
gọi d \(\in\)UC(6n+1;3n+2)
\(\Rightarrow6n+1-2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+1-6n-4⋮d\)
\(\Rightarrow-3⋮d\Rightarrow d\in u\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Lập bảng:
\(6n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-\frac{1}{3}\) | \(\frac{1}{2}\) | \(-\frac{2}{3}\) |
A là số nguyên \(\Rightarrow\)n = { \(-\frac{1}{3}\)}
1) \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)là số nguyên khi \(\frac{5}{3n+2}\)là số nguyên
suy ra \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-\frac{7}{3},-1,-\frac{1}{3},1\right\}\)mà \(n\)nguyên suy ra
\(n\in\left\{-1,1\right\}\).