K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(VT=x^2+y^2+1+2xy+2x+2y+x^2=\left(x+y+1\right)^2+x^2\ge0\forall x;y\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}x=0\\x+y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

22 tháng 7 2016

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

22 tháng 7 2016

Cảm ơn bn nha :))

11 tháng 12 2015

đề bài sai nhé, 6x phảy là 6y
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Vì \(\left(-2x+y+z\right)^2\ge0\)
\(\left(y-3\right)^2\ge0\)
\(\left(z-5\right)^2\ge0\)
\(\Rightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=3;z=5;x=4\)
\(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0\)

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

9 tháng 3 2021

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)+1=1\)

Vậy C=1

9 tháng 3 2021

\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\)

\(C=2\left(x+y\right)+13x^3y^2\left(x-y\right)+15xy\left(x-y\right)+1\)

Mà x - y = 0 (bài cho)

\(\Rightarrow C=2.0+13x^3y^2.0+15xy.0+1\)

\(C=1\)

Vậy C=1