K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Có 2 trường hợp:

TH1:l x-2 l + l 3x-2x l =6                                TH2:l x-2 l + l 3x - 2x l =6 

       x-2 + 3x - 2x = 6(bỏ dấu GTTĐ)                     -(x-2) - (3x-2x) =6

       (x+3x-2x)-2=6                                              -x+2-3x+2x=6

       2x-2=6                                                        (-x-3x+2x)+2=6

       2x=6+2                                                       -2x+2=6

       2x=8                                                          -2x=6-2

       x=8/2=4                                                     -2x=4 

                                                                         x=4/-2=-2

a: \(\Leftrightarrow\left(2x-1;y-3\right)\in\left\{\left(1;10\right);\left(5;2\right);\left(-1;-10\right);\left(-5;-2\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(1;13\right);\left(3;5\right)\right\}\)

b: \(\Leftrightarrow\left(3x-2;2y-3\right)\in\left\{\left(-1;-1\right);\left(1;1\right)\right\}\)

hay \(\left(x,y\right)\in\left(1;2\right)\)

c: \(\Leftrightarrow\left(x+1,2y-1\right)\in\left\{\left(12;1\right);\left(4;3\right);\left(-12;-1\right);\left(-4;-3\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(11;1\right);\left(3;2\right)\right\}\)

27 tháng 7 2016

bài 1:

a. \((x+1)(x+3) - x(x+2)=7 \)

    \(x^2+ 3x +x +3 - x^2 -2x =7\)

    \(x^2+4x+3-x^2-2x=7\)

\(=> 2x+3=7\)

    \(2x=4\)

    \(x = 2\)

Bài 2:

a)

\((3x-5)(2x+11) -(2x+3)(3x+7) \)

\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)

\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)

\(=-65\)

 

\(\)

 

 

27 tháng 7 2016

Hỏi đáp Toán

b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1)    0,5
Có 4 trường hợp xảy ra :
; ; ;  
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6)    1.0

phần a khó quá

22 tháng 9 2016

a) |2x-1|=5-x

\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

b)|2x-1|>2     <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)

c)\(\Leftrightarrow-5< 3x-7< 5\)   <=>2/3<x<4

15 tháng 8 2017

Bài 2 :

Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)

\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)

\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .

Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\Rightarrow\) ko thuộc vào biến

Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\) \(\Rightarrow\) ko thuộc vào biến

Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)

\(=221\) \(\Rightarrow\) không thuộc vào biến

16 tháng 8 2017

câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)

b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)

\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)

\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)

\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)

\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)

c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)

d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)

\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)

e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)

\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)

\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)

9 tháng 2 2020

2x+5=x-1

2x+x=-5-1

3x=-6

  x=-6:3

  x=-2

vậy x=-2

9 tháng 2 2020

thanks

23 tháng 10 2018

\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0.^{\left(1\right)}\)

\(NX\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}\Rightarrow}\left(1\right)\ge0\)

Dấu \("="\)xảy ra khi và chỉ khi

 \(\hept{\begin{cases}\left|2x^2+4x\right|=0\\\left|x^2+5x+6\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(2x+4\right)=0\\x\left(x+5\right)=0-6\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x\inƯ\left(6\right)\end{cases}\Rightarrow x=-2}\)

Vậy x = -2

23 tháng 10 2018

\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0\)

Ta có : \(\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}}\Rightarrow\left|2x^2+4x\right|+\left|x^2+5x+6\right|\ge0\)

\(\Rightarrow\orbr{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(2x+4\right)=0\left(1\right)\\x\left(x+5\right)=-6\left(2\right)\end{cases}}\)

(1) \(x\left(2x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

(2) x(x+5)=-6

=> x2+5x=-6

=> x2+5x+6=0

=> x2 +3x+2x+6=0

=> x(x+3)+2(x+3) = 0

=> (x+3)(x+2)=0

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

Vậy ........