K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

Xét tứ giác ACDB có A,C,D,B cùng nằm trên (O)

nên ACDB là tứ giác nội tiếp

=>\(\widehat{CAB}+\widehat{CDB}=180^0\)

mà \(\widehat{CAB}+\widehat{MAC}=180^0\)(hai góc kề bù)

nên \(\widehat{MAC}=\widehat{CDB}=\widehat{MDB}\)

Xét tứ giác AEFB có A,E,F,B cùng nằm trên (O')

nên AEFB là tứ giác nội tiếp

=>\(\widehat{BAE}+\widehat{BFE}=180^0\)

mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)

nên \(\widehat{MAE}=\widehat{MFB}\)

Xét ΔMCA và ΔMBD có

\(\widehat{MAC}=\widehat{MDB}\)

\(\widehat{M}\) chung

Do đó: ΔMCA đồng dạng với ΔMBD

=>\(\dfrac{MC}{MB}=\dfrac{MA}{MD}\)

=>\(MC\cdot MD=MA\cdot MB\)(1)

Xét ΔMAE và ΔMFB có

\(\widehat{MAE}=\widehat{MFB}\)

\(\widehat{M}\) chung

Do đó: ΔMAE đồng dạng với ΔMFB

=>\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=>\(MA\cdot MB=MF\cdot ME\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot MD=ME\cdot MF\)

=>\(\dfrac{MC}{MF}=\dfrac{ME}{MD}\)

Xét ΔMCE và ΔMFD có

\(\dfrac{MC}{MF}=\dfrac{ME}{MD}\)

\(\widehat{CME}\) chung

Do đó: ΔMCE đồng dạng với ΔMFD

=>\(\widehat{MCE}=\widehat{MFD}\)

mà \(\widehat{MCE}+\widehat{DCE}=180^0\)(hai góc kề bù)

nên \(\widehat{MFD}+\widehat{DCE}=180^0\)

=>CDFE là tứ giác nội tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
27 tháng 11 2017

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.