Cho tứ giác ABCD có hai đường chéo vuông góc với nhau tại O. Chứng minh rằng OA2 +OB2 + OC2 + OD2 =\(\frac{\text{AB^2 + BC^2 + CD^2+ DA^2}}{2}\frac{ }{ }\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 6 2018
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90