CMR nếu có n STN có tích = n và có tổng = 2012 thì n chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo 2 trường hợp:
TH1 : n là số lẻ
=> tích của n số là số lẻ nên các số trong n số đều lẻ
vậy tổng n số tự nhiên là số lẻ, mà theo đề bài tổng n số này là chẵn => loại .
TH2 : n là số chẵn
=> tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn
, Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ
=> Tổng các số là lẻ ( loại )
+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4
Theo đề bài trên : tích của n số tự nhiên bằng n
Vậy n chia hết cho 4
Xét hai trường hợp n chẵn và n lẻ sau đâu:
a) Nếu n là số lẻ thì do tích n số tự nhiên bằng n lẻ nên tất cả n số đều là các số lẻ, và tổng của n số lẻ là một số lẻ nên không thể bằng 2012 (loại trường hợp này)
b) Nếu n là số chẵn thì do tích n số tự nhiên bằng n nên trong n số đã cho có ít nhất 1 số chẵn. Xét hai khả năng sau đây:
+) Nếu trong n số chỉ có đúng một số chẵn, thì (n – 1) số còn lại đều là các số lẻ, khi đó tổng của (n – 1) số lẻ là một số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012 (loại khả năng này).
+) Nếu trong n số có ít nhất 2 số chẵn thì tích cỉa 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên suy ra chia hết cho 4.
Xét 2 trường hợp:
TH1: Nếu n là số lẻ thì tích của n số là số lẻ nên các số trong n số đều lẻ
=> Tổng n số tự nhiên này là số lẻ
Mà theo đề bài tổng n số này là chẵn => loại
TH2: Nếu n là số chẵn thì tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn
+, Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ => Tổng các số là lẻ ( loại )
+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4
Theo giả thiết: tích của n số tự nhiên bằng n
=> n chia hết cho 4
Xét 2 trường hợp n chẵn và n lẻ sau đây:
A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)
B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:
+ Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)
+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4.
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\Rightarrow⇒Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp ⋮⋮8\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮8⋮8(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮5⋮5\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮5⋮5 (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow⋮3⇒k(k+1)(k+2)(k+3)(k+4)⋮3⋮3 (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮3.5.8⋮3.5.8=120
Vậy tích của 5 số tự nhiên liên tiếp ⋮120⋮120
1)Vì tổng của 2 số đó không chia hết cho 2
=>Tổng của chúng là số lẻ
=>Không thể cả 2 số đều cùng chẵn hoặc cùng lẻ
=>Có 1 số chẵn và 1 số lẻ
=>Tích của chúng là số chẵn(vì số nào nhân với số chẵn đều được tích là số chẵn)
=>Tích của chúng chia hết cho2
2)Ta có: a+a2=a.(a+1)
Vì a là số tự nhiên
=>a có 2 dạng là 2k hoặc 2k+1
Xét a=2k=>a.(a+1)=2k.(a+1) chia hết cho 2
=>a+a2 chia hết cho 2(1)
Xét a=2k+1=>a.(a+1)=a.(2k+1+1)=a.(2k+2)=a.(k+1).2 chia hết cho 2
=>a+a2 chia hết cho 2(2)
Từ (1) và (2) ta thấy: a+a2 chia hết cho 2
=>ĐPCM
Chứng minh rằng nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4.
Lời giải. Xét tính chẵn lẻ của n. Nếu n là số lẻ thì tích n số tự nhiên bằng n lẻ nên tất cả n số đều là
các số lẻ. Do đó tổng của n là số lẻ, khác 2012. Nếu n là số chữ thì suy ra ít nhất một trong n số phải là
số chẵn. Xét các trường hợp sau
Nếu trong n số chỉ có đúng một số chẵn thì n − 1 số còn lại đều là số lẻ. Tổng của n − 1 số lẻ là một số
lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012 (loại khả
năng này).
Nếu có ít nhất hai số chẵn trong n số thì tích của hai số này phải chia hết cho 4. Theo giải thiết, tích của
n số tự nhiên bằng n nên suy ra n chia hết cho 4.
Xét 2 trường hợp n chẵn và n lẻ sau đây:
A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)
B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:
+ Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)
+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4.