K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

12 tháng 7 2023

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

12 tháng 7 2023

Bạn xem lại đề bài nhé!

9 tháng 7 2017

ta có :

 a) \(\left(x+y\right)^2-y^2=x.\left(x+2y\right)\)

\(\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)

b) \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2.\left(x-y\right)^2\)

\(\Leftrightarrow x^4+2x^2y^2+y^4-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow x^4-2x^2y^2+y^4=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)

\(\Leftrightarrow x^4-2x^2y^2+y^4=x^4-2x^2y^2+y^4\)

c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)

tk mình nhé bạn mình mất nhìu công lắm mới hoàn thành xong đó .... đúng thì tk nhé mơnnnn

Xin lỗi mink mới có lớp 5 thôi ak nên mik ko thể giúp bn , xin lỗi bn nha ! 

25 tháng 3 2016

Gọi 4 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5; 2k+7 (\(k\in N\))

   Xét tổng: 2k+1+2k+3+2k+5+2k+7

                = (2k+2k+2k+2k)+(1+3+5+7)

                =8k+16

    Mà 8k chia hết cho 8

         16 chia hết cho 8

=> tổng 4 số lẻ liên tiếp chia hết cho 8

25 tháng 3 2016

gọi số đó là 2k+1

=>4 số lẻ liên tiếp là:2k+1+2k+3+2k+5+2k+7

                             = 8k+16

                              =8(k+2)chia hết cho 8

vậy ...........................


 

3 tháng 11 2019

 x,y = ( 6,5);(10,30

3 tháng 11 2019

b,

b.a=30=1.30=2.15=3.10=5.6

=>(b,a)={(1,30),(2,15),(3,10),(5,6)}

c,

(x+1)(y+2)=10=1.10=2.5

TH1:x+1=1;y+2=10=>x=0,y=8

tuong tu=>(x,y)={(0,8),(1,3),(4,0)}

22 tháng 8 2020

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

22 tháng 8 2020

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)