Cho x>2y và xy=1, tìm MIN
\(y=\frac{x^2+4y^2}{x-2y}\)
Cảm ơn mọi người đã giúp đỡ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)
\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)
\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)
\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)
\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)
\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)
\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Ta có
\(\frac{x^2+4y^2}{x-2y}=\frac{x^2+4y^2-4xy+4xy}{x-2y}=\frac{\left(x-2y\right)^2}{x-2y}+\frac{4}{x-2y}\)
\(=x-2y+\frac{4}{x-2y}\)
Áp dụng bđt Cauchy cho hai số không âm, ta có
\(x-2y+\frac{4}{x-2y}\ge2\sqrt{\left(x-2y\right)\times\frac{4}{x-2y}}=2\sqrt{4}=4\)
Suy ra Pmin = 4
Dấu bằng xảy ra khi và chỉ khi \(x-2y=\frac{4}{x-2y}\Leftrightarrow\left(x-2y\right)^2=4\Leftrightarrow x-2y=2\)
( do x - 2y \(\ge0\) )
Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\)
\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Áp dụng Bđt Cô si ngược dấu ta có:
\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)
Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit