Cho x (x thuộc R, x>0) thoả mãn \(x^2+\frac{1}{x^2}=7\)
a) Tính A = \(x^3+\frac{1}{x^3}\)
b) Tính B= \(x^5+\frac{1}{x^5}\)
Nhanh, mình dang gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=x^7+x+\frac{1}{x}+\frac{1}{x^7}-\left(x+\frac{1}{x}\right)=x^7+\frac{1}{x^7}\)
b/ Ta có:
\(\left(x+\frac{1}{x}\right)^2=49\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=49-2=47\)
\(\left(x+\frac{1}{x}\right)^3=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}=343-3.7=322\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=47.322=15134\)
\(\Leftrightarrow x^5+\frac{1}{x}+x+\frac{1}{x^5}=15134\)
\(\Leftrightarrow x^5+\frac{1}{x^5}=15134-7=15127\)
a)\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=x^7+x+\frac{1}{x}+\frac{1}{x^7}-x-\frac{1}{x}\)
=\(x^7+\frac{1}{x^7}\)
\(x+\frac{1}{x}=7\)
=>\(x\left(x+\frac{1}{x}\right)=7x\)
=>\(^{x^2-7x+1=0}\)
=>\(x=\frac{7+3\sqrt{5}}{2};x=\frac{7-3\sqrt{5}}{2}loại\)
=>\(x^5+\frac{1}{x^5}=15127\)
a.3 - | x + 7 | - 1/2 = 1/3
3 - | x + 7 | = 1/3 +1/2
3 - | x +7 | = 5/6
| x+ 7 | = 3 - 5/6
| x + 7| = 13/ 6
roi chia thanh 2 truong hop la xong ok
a) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}-\frac{3}{7}:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}-\frac{3}{7}:x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};\frac{6}{7}\right\}\)
b)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}+4=4\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)
\(\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
Vậy \(x=-329\)
Trả lời :
Cần j bạn ?
Hok_Tốt
#Thiên_Hy
________
B1:dài quá :vv
B2:\(Q=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
\(=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}=\frac{2}{3}.\frac{x}{x^2+x+1}\)
\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\Rightarrow\frac{x^2-x+1}{x}+2=\frac{3}{2}+2\Rightarrow\frac{x^2+x+1}{x}=\frac{7}{2}\)
\(\Rightarrow\frac{x}{x^2+x+1}=\frac{2}{7}\Rightarrow Q=\frac{2}{3}.\frac{2}{7}=\frac{4}{21}\)
3.
Ta có: \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Do a(a-1)(a+1)(a-2)(a+2) là tích của 5 số hạng liên tiếp nên chia hết cho 2,3 và 5
Lại có a(a-1)(a+1) là tích của 3 số hạng liên tiếp nên chia hết cho 2,3 suy ra 5a(a-1)(a+1) chia hết cho 2,3,5
Từ đó:a(a-1)(a+1)(a-1)(a+2)+5a(a-1)(a+1) chia hết cho 2,3,5 hay a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1) chia hết cho 30 \(\Leftrightarrow a^5-a\) chia hết cho 30
Tương tự ta có\(b^5-b\) chia hết cho 30, \(c^5-c\) chia hết cho 30
Do đó:\(a^5-a+b^5-b+c^5-c⋮30\)
\(\Leftrightarrow a^5+b^5+c^5-\left(a+b+c\right)⋮30\)
Mà a+b+c=0 nên;
\(a^5+b^5+c^5⋮30\left(ĐCCM\right)\)