x^2-6x+8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{-2;1\right\}\)
b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)
hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)
\(\Rightarrow x^3-6x^2+12x-8+6x^2-48x+8=0\\ \Rightarrow x^3-36x=0\\ \Rightarrow x\left(x^2-36\right)=0\\ \Rightarrow x\left(x-6\right)\left(x+6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
f) (2x - 8)(4x + 16) = 0
<=> 2x - 8 = 0 hoặc 4x + 16 = 0
<=> 2x = 0 + 8 hoặc 4x = 0 - 16
<=> 2x = 8 hoặc 4x = -16
<=> x = 4 hoặc x = -4
g) 5x(6x - 12) = 0
<=> 5x = 0 hoặc 6x - 12 = 0
<=> x = 0 hoặc 6x = 0 + 12
<=> x = 0 hoặc 6x = 12
<=> x = 0 hoặc x = 2
h) 7(9 - x)(12 - 6x) = 0
<=> 9 - x = 0 hoặc 12 - 6x = 0
<=> -x = 0 - 9 hoặc -6x = 0 - 12
<=> -x = -9 hoặc -6x = -12
<=> x = 9 hoặc x = 2
c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Đặt \(x^2+6x+7=t\)
Bài toán trở thành tìm m để phương trình: \(\left(t-2\right)\left(t+1\right)=m-1\) (1) có nghiệm \(t< 0\)
\(\left(1\right)\Leftrightarrow t^2-t-1=m\)
Xét hàm \(f\left(t\right)=t^2-t-1\)
\(f\left(0\right)=-1\) và hàm số nghịch biến khi \(t< 0\)
\(\Rightarrow f\left(t\right)>-1\) \(\forall t< 0\)
\(\Rightarrow\) phương trình \(f\left(t\right)=m\) có nghiệm \(t< 0\) khi và chỉ khi \(m>-1\)
Vậy với \(m>-1\) thì pt đã cho có nghiệm thỏa \(x^2+6x+7< 0\)
x2-6x+8=0
<=> x2 - 4x -2x +8 = 0
<=> x(x-4) - 2(x-4)=0
<=> (x-2)(x-4)=0
<=> x-2=0 hoặc x-4 =0
<=> x=2 hoặc x=4
x2-6x+8=0
<=> x2 - 4x -2x +8 = 0
<=> x(x-4) - 2(x-4)=0
<=> (x-2)(x-4)=0
<=> x-2=0 hoặc x-4 =0
<=> x=2 hoặc x=4