K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

(x+1).(2x-6).(2x2+1)=0

=>x+1=0 hoặc 2x-6=0 hoặc 2x2+1=0

+)Nếu x+1=0

=>x=-1

+)Nếu 2x-6=0

=>2x=6

=>x=3

+)Nếu 2x2+1=0

=>2x2=-1

Vì x2\(\ge\)0=>2x2\(\ge\)0

=>ko có thỏa mãn

Vậy x=-1 hoặc x=3

\(\left(x+1\right)\left(2x-6\right)\left(2x^2+1\right)=0\)

Th1 : \(x+1=0\)

\(=>x=-1\)

Th2 : \(2x-6=0\)

\(=>x=\frac{6}{2}=3\)

Th3 : \(2x^2+1=0\)

\(=>x^2=\frac{-1}{2}\)

\(=>\orbr{\begin{cases}x=-\sqrt{\left(\frac{-1}{2}\right)}\\x=\sqrt{\left(\frac{-1}{2}\right)}\end{cases}}\)

Bài này làm hơi dài bạn có thể rút ngắn lại = ngoặc vuông 3 ô 

Chúc bạn học tốt

22 tháng 12 2021

a: \(\Leftrightarrow x-3=7\)

hay x=10

a: =>3^x=3^4*3=3^5

=>x=5

b: =>\(2^{x+1}=2^5\)

=>x+1=5

=>x=4

c: \(\Leftrightarrow3^{x+2-3}=3\)

=>x-1=1

=>x=2

d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)

=>x=4 hoặc x=-4

e: (2x-1)^4=81

=>2x-1=3 hoặc 2x-1=-3

=>2x=4 hoặc 2x=-2

=>x=-1 hoặc x=2

f: (2x-6)^4=0

=>2x-6=0

=>x-3=0

=>x=3

18 tháng 8 2023

a) \(3^x=81\cdot3\)

\(\Rightarrow3^x=3^4\cdot3\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

b) \(2^{x+1}=32\)

\(\Rightarrow2^{x+1}=2^5\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

c) \(3^{x+2}:27=3\)

\(\Rightarrow3^{x+2}:3^3=3\)

\(\Rightarrow3^{x+2-3}=3\)

\(\Rightarrow3^{x-1}=3\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

d) \(2x^2=32\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x^2=4^2\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

e) \(\left(2x-1\right)^4=81\)

\(\Rightarrow\left(2x-1\right)^4=3^4\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

f)  \(\left(2x-6\right)^4=0\)

\(\Rightarrow2x-6=0\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=6:2\)

\(\Rightarrow x=3\)

1 tháng 11 2021

1.

a) \(2x^4-4x^3+2x^2\)

\(=2x^2\left(x^2-2x+1\right)\)

\(=2x^2\left(x-1\right)^2\)

b) \(2x^2-2xy+5x-5y\)

\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)

\(=2x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(2x+5\right)\)

1 tháng 11 2021

2 . 

a,

\(4x\left(x-3\right)-x+3=0\)

\(4x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right)\left(4x-1\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)

vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)

b, 

\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0

\(\left(x-4\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)

vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

26 tháng 4 2022

a. 5 - 3(x + 4) = -1

⇔ 5 - 3x - 12 = -1

⇔ 3x = -1 - 5 + 12

⇔ 3x = 6

⇔ x = 2

26 tháng 4 2022

\(d,2x^2-3=5\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

\(e,x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

26 tháng 8 2018

a: =>2x^2=4

=>x^2=2

=>\(x=\pm\sqrt{2}\)

b: =>(x+1)^2-4=0

=>(x+1+2)(x+1-2)=0

=>(x+3)(x-1)=0

=>x=1 hoặc x=-3

c: =>(2x-1)^2-3^2=0

=>(2x-1-3)(2x-1+3)=0

=>(2x-4)(2x+2)=0

=>x=2 hoặc x=-1

d: x^2-x=0

=>x(x-1)=0

=>x=0 hoặc x=1

a) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-2\right)-3\left(x-2\right)\right]\left[x\left(x-1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)

Vậy: S={1;2;3;4}

b) Ta có: \(\left(2x+1\right)^2-2x-1=2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)

\(\Leftrightarrow\left(2x+1+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{2}\right\}\)

c) Ta có: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-x^2+x-x^2+x-1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-2x^2+2x-1\right)-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-x-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-4x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\forall x\)

nên (x-2)(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy: S={2;-1}

d) Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+2x\right)+x\left(x^2+1+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}