Cho hình thang ABCD (AB//CD) có AB=BC, AC=CD và góc BCD=góc ADC. Tính các góc của hình thang
Giúp mình với. Mình cần câu trả lời gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(\widehat{ADB}=\widehat{D_1;}\widehat{CDB}=\widehat{D_2}\)
Xét Δ vuông BDC ta có :
\(\)\(\widehat{D_2}+\widehat{C}=90^o\)
mà \(\widehat{D_2}=\dfrac{\widehat{D}}{2}\) (DB là phân giác \(\widehat{ADC}\))
\(\widehat{C}=\widehat{D}\) (ABCD là hình thang cân)
\(\Rightarrow\dfrac{\widehat{D}}{2}+\widehat{D}=90^o\)
\(\Rightarrow\dfrac{\widehat{3D}}{2}=90^o\Rightarrow\widehat{D}=60^o\Rightarrow\widehat{C}=\widehat{D}=60^o\)
Ta lại có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{matrix}\right.\) (ABCD là hình thang cân)
\(\Rightarrow2\widehat{A}+2\widehat{C}=360^o\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2\widehat{C}}{2}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2.60^o}{2}=120^o\)
b) \(BC=AD=6\left(cm\right)\) (ABCD là hình thang cân)
Xét Δ vuông BDC ta có :
\(Cos60^o=\dfrac{BC}{DC}=\dfrac{1}{2}\)
\(\Rightarrow DC=2BC=2.6=12\left(cm\right)\)
\(DC^2=BD^2+BC^2\left(Pitago\right)\)
\(\Rightarrow BD^2=DC^2-BC^2=12^2-6^2=144-36=108=3.36\)
\(\Rightarrow BD=6\sqrt[]{3}\left(cm\right)\)
Kẻ đường cao AH và BE vuông góc DC tại H và E
Ta có : \(BE.CD=BD.BC\Rightarrow BE=\dfrac{CD}{BD.BC}=\dfrac{12}{6.6\sqrt[]{3}}=\dfrac{1}{3\sqrt[]{3}}\left(cm\right)\)
Xét Δ BEC ta có :
\(BC^2=BE^2+EC^2\Rightarrow EC^2=BC^2-BE^2=36-\dfrac{1}{27}\)
\(\Rightarrow EC^2=\dfrac{971}{27}\Rightarrow EC=\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
ABHE là hình chữ nhật (AB \(//\) HE;AH \(//\) BE vì cùng vuông với CD; Góc H=90o )
\(\Rightarrow AB=HE=CD-2EC=12-\dfrac{2}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\) (tính chất hình thang cân)
Chu vi hình thang cân ABCD :
\(2BC+DC+AB=2.6+12+12-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}=36-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
a/
\(\widehat{ADB}=\widehat{CDB}=\dfrac{\widehat{ADC}}{2}\) (gt)
Mà \(\widehat{ADC}=\widehat{BCD}\) (góc ở đáy hình thang cân)
\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}\)
Xét tg vuông BCD có
\(\widehat{CDB}+\widehat{BCD}=90^o\Rightarrow\dfrac{\widehat{BCD}}{2}+\widehat{BCD}=90^o\Rightarrow\widehat{BCD}=60^o\)
\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}=\dfrac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{ADC}=\widehat{BCD}=60^o\)
Ta có
\(\widehat{DAB}=\widehat{ABC}\) (góc ở đáy hình thang cân)
\(\widehat{DAB}=180^o-\widehat{ADC}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{DAB}=\widehat{ABC}=120^o\)
b/ Từ B dựng đường thẳng // AD cắt CD tại E ta có
AB // CD => AD//DE mà BE//AD
=> ABED là hình bình hành
=> BE = AD mà AD = BC (cạnh bên hình thang cân)
=> BE = AD = BC = 6 cm
Xét tg BCE có
BE = BC => tg BCE cân tại B
\(\Rightarrow\widehat{BEC}=\widehat{BCD}=60^o\Rightarrow\widehat{CBE}=60^o\) => tg BCE là tg giác đều
=> BE = CE = BC = 6 cm
Xét tg vuông BCD có
\(\widehat{CDB}=30^o\) (cmt) => \(BC=\dfrac{CD}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
\(\Rightarrow CD=2BC=2.6=12cm\)
\(\Rightarrow DE=CD-CE=12-6=6cm\)
Mà DE = AB = 6 cm (cạnh đối hbh ABED)
\(\Rightarrow C_{ABCD}=AB+BC+CD+AD=6+6+12+6=30cm\)
Ta có DB là tia pgiac của \(\widehat{ADC}\)
Mà \(\widehat{ADC}=\widehat{BCD}\) do 2 góc là góc đáy của hình thang
=>\(\widehat{BDC}=\widehat{DCB}:2\)
Xét ∆ vuông BDC có:
\(\widehat{BDC}+\widehat{DCB}=90^o=>\widehat{DCB}:2+\widehat{DCB}=90^o\)
\(\Rightarrow\widehat{DCB}=60^o\\ \Rightarrow\widehat{BDC}=60^o:2=30^O\)
Ta có: \(\widehat{BAD}=\widehat{ABC}\) (t/chất hthang)
\(\Rightarrow\widehat{BAD}=180^o-\widehat{BDC}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{BAD}=\widehat{ABC}=120^o\)
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang