Tìm số hữu tỉ x, biết rằng:
a) (x+1) (x-2) < 0
b) (x-2) (x+2/3) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
a/ (x+1)(x-2) < 0 => \(\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow-1< x< 2\)
b/ (x+1/2)(x-2) > 0 => \(\begin{cases}x+\frac{1}{2}>0\\x-2>0\end{cases}\) hoặc \(\begin{cases}x+\frac{1}{2}< 0\\x-2< 0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x< -\frac{1}{2}\\x>2\end{array}\right.\)
1, (3x + 1/5).(x - 1/2) = 0
<=> (3x + 1/5) = 0 hoặc (x - 1/2) = 0
<=> 3x = -1/5 hoặc x = 1/2
<=> x = -1/15 hoặc x = 1/2
a) \(\left|x+2\right|>7\)
\(\Leftrightarrow\orbr{\begin{cases}x+2>7\\x+2< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>5\\x< -9\end{cases}}\Leftrightarrow5< x< -9\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+2< 7\\x+2>-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 5\\x>-9\end{cases}}\Leftrightarrow-9< x< 5\left(tm\right)\)
vậy....
v) \(\left|x-1\right|< 3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 3\\x-1>-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow-2< x< 4\)
vậy...
( x - 3/2 ) ( 2x + 1 ) > 0
TH1 : cả 2 thừa số đều lớn hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{3}{2}\\x>-\frac{1}{2}\end{cases}\Rightarrow}x>\frac{3}{2}}\)
TH2 : cả 2 thừa số đều bé hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{3}{2}\\x< -\frac{1}{2}\end{cases}\Rightarrow}x< -\frac{1}{2}}\)
Vậy,..........