Cho tam giác ABC biết AB = 15cm, AC = 20 cm, BC = 25 cm.
a) Chứng minh tam giác ABC vuông?
b) Kẻ AK vuông góc với BC( K thuộc BC), biết AH= 12cm. Tính số đo cạnh BK, KC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔBKC có \(BC^2=KB^2+KC^2\)
nên ΔBKC vuông tại K
b: Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
BC chung
\(\widehat{HBC}=\widehat{KCB}\)
Do đó: ΔBHC=ΔCKB
c: Ta có: ΔBHC=ΔCKB
nên BH=CK
Ta có: AH+BH=AB
AK+KC=AC
mà BH=KC
và AB=AC
nên AK=AH
Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) tam giác ABC có BC^2=52^2=2704
mà AB^2+AC^2=20^2+48^2=2704
=> BC^2=AB^2+AC^2
=> tam giác ABC vuông tại A
b) tam giác ABC vuông tại A=> AH.BC=AB.AC
=> AH.52=20.48
=> AH.52=960
=> AH=240/13cm
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)
CK=BC-BK=16(cm)