K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi hay sao ấy 

 \(n^2-14n-256=?\)

Sửa lại đi . Nếu đề đúng thì ko có n nào thỏa mãn

17 tháng 8 2016

biểu thức đã cho là số tự nhiên khi n^2+14n-256=a^2(a là số tự nhiên)

n^2+14n+49=a^2+49+256=a^2+305

(n+7)^2= a^2+305

vì n là số tự nhiên nên n+7 là số tự nhiên nên (n+7)^2 là số chính phương có dang b^2(b là số tự nhiên)

suy ra a^2+305=b^2

b^2-a^2=305

(b-a)(b+a)=305

vì a và b là số tự nhiên nên a+b là số tự nhiên và b+a>b-a

suy ra b+a là ước tự nhiên của 305={1;5;61;305}

nếu b+a=1 thì b-a=305>b+a(loại)

nếu b+a=5 thì b-a=61>b+a(loại)

nếu b+a=61 thì b-a=5 suy ra a=28 thay vào tìm được n=26

nếu b+a=305 thì b-a=1 suy ra a=152 thay vào tìm đươc n=146

vây n=26 hoặc n=146 tmđb

29 tháng 1 2018

22 tháng 10 2017

Chọn A

27 tháng 11 2019

Đặt \(n^2-14n-256=a^2\)

\(\Leftrightarrow\left(n^2-14n+49\right)-a^2=305\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n-7+a\right)\left(n-7-a\right)=305=5\cdot61\)

Đến đây làm nốt đi.

27 tháng 11 2019

Đặt \(G=n^2-14n-256=a^2\)(là số chính phương)

\(\Leftrightarrow n^2-14n+49-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n+a-7\right)\left(n-a-7\right)=305=5.61\)

Mà \(n+a-7\ge n-a-7\)nên \(\hept{\begin{cases}n+a-7=61\\n-a-7=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+a=68\\n-a=12\end{cases}}\Leftrightarrow n=\frac{68+12}{2}=40\)

Vậy n = 40 thì \(G=n^2-14n-256\)là số chính phương

21 tháng 3 2016

ta có: 2^n = 256  => 2^n=2^8   => n = 8

21 tháng 3 2016

2^n=256

=>n=8

ok

muốn giải chi tiết thì tích mình đã

19 tháng 2 2017

2n=28

=> n=8

19 tháng 2 2017

n chính là 56 đó

3 tháng 1 2022

lolang

Không ai bt làm::(

 

4 tháng 1 2022

Ngồi hóng hóng

25 tháng 12 2020

undefinedXài cái này gõ bài đi bạn, thề như này hiểu chết liền á :(

13 tháng 11 2021

giả sử \(n^2+6n+3\) là SCP

Đặt \(n^2+6n+3=k^2\)

\(\Rightarrow\left(n^2+6n+9\right)-k^2-6=0\\ \Rightarrow\left(n+3\right)^2-k^2=6\\ \Rightarrow\left(n-k+3\right)\left(n+k+3\right)=6\)

Vì \(n\in N\Rightarrow\left\{{}\begin{matrix}n-k+3\in Z,n+k+3\in Z\\n-k+3< n+k+3\\n-k+3,n+k+3\inƯ\left(6\right)\end{matrix}\right.\)

rồi bạn lập bảng ra, tự lm tiếp nhé