Chứng minh rằng:x2+y2+x-2y+100>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+\dfrac{z^2}{4}+4-yz-4y+2z\right)+\dfrac{3}{4}\left(z^2-\dfrac{8z}{3}+\dfrac{16}{9}\right)-\dfrac{91}{12}\)
\(VT=\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{z}{2}-2\right)^2+\dfrac{3}{4}\left(z-\dfrac{4}{3}\right)^2-\dfrac{91}{12}\ge-\dfrac{91}{12}>-7\)
Đề bài bảo cm \(\ge\) -7 chứ đâu phải > -7 đâu Nguyễn Việt Lâm?
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}\) = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)
\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\))2 (2)
Từ (1) và (2) ta có :
\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)
⇒
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= = = = = (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
= =
= ⇒ = ()2 (2)
Từ (1) và (2) ta có :
= + y2 + z2 = ( )2 (đpCm)
\(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2\forall x\in R\)
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
a: x>2
y>2
=>x+y>2+2=4
x>y>2
=>xy>2^2=4
b: x^2-xy=x(x-y)
x-y>0; x>0
=>x(x-y)>0
=>x^2-xy>0
y>2
=>y-2>0
=>y(y-2)>0
=>y^2-2y>0
x>y và y>2
=>y>0 và x-y>0
=>y(x-y)>0
=>xy-y^2>0
Mặt cầu (S) tâm I(1; -2; -1) bán kính R = 5
d(I,(P)) = 3 < R
Do đó (P) cắt (S) theo một đường tròn, gọi đường tròn đó là (C).
\(-y^2+2y-4=-\left(y^2-2y+1\right)-3=-\left(y-1\right)^2-3\le-3< 0\forall y\)
\(x^2+y^2+x-2y+100=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2-2y+1\right)+98\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\left(y-1\right)^2+98\frac{3}{4}\ge98\frac{3}{4}\)