K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

4 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật

Lại có : AD = AE (tính chất hai tiếp tuyến giao nhau)

Vậy tứ giác ADOE là hình vuông

24 tháng 6 2017

a) tứ giác ADOE là hình vuông

\(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)

và OD = OE = R

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

6 tháng 2 2019

a, Ta đã chứng minh được: AE =  b + c - a 2

=> AE =  a + b + c - 2 a 2 = p – a

∆AIE có IE = EA.tan B A C ^ 2

= (p – a).tan B A C ^ 2

b, Chú ý: BI ⊥ FD và CIE. Ta có:

B I C ^ = 180 0 - I B C ^ + I C D ^ =  180 0 - 1 2 A B C ^ + A C B ^

180 0 - 1 2 180 0 - B A C ^ =  90 0 + B A C ^ 2

Mà:  E D F ^ = 180 0 - B I C ^ = 90 0 - α 2

c, BH,AI,CK  cùng vuông góc với EF nên chúng song song =>  H B A ^ = I A B ^  (2 góc so le trong)

và  K C A ^ = I A C ^ mà  I A B ^ = I A C ^ nên  H B A ^ = K C A ^

Vậy: ∆BHF:∆CKE

d, Do BH//DP//CK nên  B D D C = H P P K mà DB = DF và CD = CE

=>  H P P K = B F C E = B H C K => ∆BPH:∆CPK =>  B P H ^ = C P E ^

Lại có:  B F P ^ = C E F ^ => ∆BPF:∆CEP (g.g)

mà  B P D ^ = C P D ^ => PD là phân giác của  B P C ^

4 tháng 10 2018

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b