Cho biểu thức 4x+9/x-1
a, B có giá trị nhỏ nhất. Tìm GTNN
b, B có GTLN. Tìm GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá dễ D:
\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)
Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)
\(C=-x^2-x+1=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
...
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)